Hyperbolic Games |
このアプリは現在ストアで閲覧することができません。 | ||||
価格 | 無料 | ダウンロード |
||
---|---|---|---|---|
ジャンル | 教育 | |||
サイズ | 2.8MB | |||
開発者 | Jeff Weeks | |||
順位 |
| |||
リリース日 | 2018-02-25 01:37:44 | 評価 |
|
|
互換性 | iOS 12.0以降が必要です。 iPhone、iPad および iPod touch 対応。 | |||
|
||||
The Hyperbolic Games are similar in spirit to the Torus Games, but played on curved surfaces. Most people will want to start with the Torus Games instead, which offer a selection of easily playable games, designed for children ages 10 and up, all implemented in multi-connected spaces in 2 and 3 dimensions.
The Hyperbolic Games, by contrast, are for math students — advanced undergraduates and beginning graduate students. These games are more challenging than the Torus Games because they combine a multi-connected topology with a non-Euclidean geometry. Mathematically they illustrate the following:
- The hyperbolic plane, as a live scrollable object.
- The under-appreciated fact that the two traditional models of the hyperbolic plane are simply different views of the same fixed-radius surface in Minkowski space: the Beltrami-Klein model corresponds to a viewpoint at the origin (central projection) while the Poincaré disk model corresponds to a viewpoint one radian further back (stereographic projection). Players may pinch-to-zoom to pass from one to the other, or stop to view the model from any other distance.
- The strong — but also under-appreciated — correspondence between the hyperbolic plane and an ordinary sphere. In particular, central projection of the sphere corresponds to the Beltrami-Klein model of the hyperbolic plane, and stereographic projection of the sphere corresponds to the Poincaré disk model of the hyperbolic plane.
- The Klein quartic surface, viewed with its natural geometry. The sudoku puzzles take full advantage of the Klein quartic’s tremendous amount of symmetry.
更新履歴
Supports Wide Color displays
The Hyperbolic Games, by contrast, are for math students — advanced undergraduates and beginning graduate students. These games are more challenging than the Torus Games because they combine a multi-connected topology with a non-Euclidean geometry. Mathematically they illustrate the following:
- The hyperbolic plane, as a live scrollable object.
- The under-appreciated fact that the two traditional models of the hyperbolic plane are simply different views of the same fixed-radius surface in Minkowski space: the Beltrami-Klein model corresponds to a viewpoint at the origin (central projection) while the Poincaré disk model corresponds to a viewpoint one radian further back (stereographic projection). Players may pinch-to-zoom to pass from one to the other, or stop to view the model from any other distance.
- The strong — but also under-appreciated — correspondence between the hyperbolic plane and an ordinary sphere. In particular, central projection of the sphere corresponds to the Beltrami-Klein model of the hyperbolic plane, and stereographic projection of the sphere corresponds to the Poincaré disk model of the hyperbolic plane.
- The Klein quartic surface, viewed with its natural geometry. The sudoku puzzles take full advantage of the Klein quartic’s tremendous amount of symmetry.
更新履歴
Supports Wide Color displays
ブログパーツ第二弾を公開しました!ホームページでアプリの順位・価格・周辺ランキングをご紹介頂けます。
ブログパーツ第2弾!
アプリの周辺ランキングを表示するブログパーツです。価格・順位共に自動で最新情報に更新されるのでアプリの状態チェックにも最適です。
ランキング圏外の場合でも周辺ランキングの代わりに説明文を表示にするので安心です。
サンプルが気に入りましたら、下に表示されたHTMLタグをそのままページに貼り付けることでご利用頂けます。ただし、一般公開されているページでご使用頂かないと表示されませんのでご注意ください。
幅200px版
幅320px版
Now Loading...
「iPhone & iPad アプリランキング」は、最新かつ詳細なアプリ情報をご紹介しているサイトです。
お探しのアプリに出会えるように様々な切り口でページをご用意しております。
「メニュー」よりぜひアプリ探しにお役立て下さい。
Presents by $$308413110 スマホからのアクセスにはQRコードをご活用ください。 →
Now loading...